PART-A (1-20)

1. At what temperature root mean square speed of N_{2} gas is equal to that of propane gas at S.T.P. conditions ?
(A) $173.7^{\circ} \mathrm{C}$
(B) 173.7 K
(C) S.T.P.
(D) $-40^{\circ} \mathrm{C}$
2. For the reaction scheme

the rate equation for the formation of D is given as -
(A) $\frac{d[D]}{d t}=\frac{K_{1} K_{3} C_{A} C_{B}}{K_{2}+K_{3} C_{B}}$
(C) $\frac{d[D]}{d t}=\frac{K_{1} K_{3} C_{A} C_{B}{ }^{2}}{K_{2}+K_{3} C_{B}}$
(B)
$\frac{\mathrm{d}[\mathrm{D}]}{\mathrm{dt}}=\frac{\mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{3} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{B}}}{\mathrm{K}_{2}-\mathrm{K}_{3} \mathrm{C}_{\mathrm{B}}}$
(D)

3. Bond energy of $\mathrm{H}-\mathrm{H}, \mathrm{F}-\mathrm{F}$ and $\mathrm{H}-\mathrm{F}$ bonds are 104,38 and $135 \mathrm{kcal} \mathrm{mol}^{-1}$ respectively. The resonance energy in the $\mathrm{H}-\mathrm{F}$ molecule is
(A) $-72.14 \mathrm{kcal} \mathrm{mol}^{-1}$
(B) $72.14 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$
(C) $207.14 \mathrm{kcal} \mathrm{mol}^{-1}$
(D) $-207.14 \mathrm{kcal} \mathrm{mol}^{-1}$
4. Of the following compounds, which will have a zero dipole moment?
(A) 1, 1-Dichloroethylene
(B) cis-1, 2-Dichloroethylene
(C) trans-1, 2-Dichloroethylene
(D) None of the three.
5. Which stable product is formed in the following reaction?

(A)

(C) A \& B both
(B)

(D) None of these
6. Consider the following reaction

What is the reaction known as and which species does it involve, respectively,
(A) Sandmeyar, free radical
(B) Refmer-Tiemann, carbene
(C) Hensdiecker, free radical
(D) Friedal-Crafts, Carbonium ion
7. The end product formed in the following reaction is

(i) MgI (Excess)
(ii) $\mathrm{Ag}_{2} \mathrm{O}$
(iii) Δ
(A)

(C)

(D)

8. The end product formed in the following reaction is :

(i)

(iii) $\mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}$
(A)

(C)

(B)
(D)

9. Predict the structure of the product in the following reaction.

$\xrightarrow[\text { (ii) } \mathrm{H}_{3} \mathrm{O}^{+}]{\text {(i) } \mathrm{NaBH}_{4}}$
(A)

(B)

(C)
(D)

The solubilities of $\mathrm{K}_{2} \mathrm{SO}_{4}, \mathrm{BeSO}_{4}, \mathrm{CaSO}_{4}$ and BaSO_{4} follow the order
(A) $\mathrm{K}_{2} \mathrm{SO}_{4}>\mathrm{BaSO}_{4}>\mathrm{CaSO}_{4}>\mathrm{BeSO}_{4}$
(B) $\mathrm{BeSO}_{4}>\mathrm{CaSO}_{4}>\mathrm{K}_{2} \mathrm{SO}_{4}>\mathrm{BaSO}_{4}$
(C) $\mathrm{K}_{2} \mathrm{SO}_{4}>\mathrm{BeSO}_{4}>\mathrm{CaSO}_{4}>\mathrm{BaSO}_{4}$
(D) $\mathrm{BeSO}_{4}>\mathrm{K}_{2} \mathrm{SO}_{4}>\mathrm{CaSO}_{4}>\mathrm{BaSO}_{4}$
11. How many nearest neighbours Cs^{+}are present in CsCl structure ?
(A) 6
(B) 8
(C) 12
(D) 4
12. Which one of the following species does not exist under normal conditions ?
(A) B_{2}
(B) Be_{2}
(C) $\mathrm{Be}_{2}{ }^{+}$
(D) Li_{2}
13. The correct order of decreasing second ionisation enthalpy of $\mathrm{Ti}, \mathrm{V}, \mathrm{Cr}$ and Mn is
(A) $\mathrm{V}>\mathrm{Mn}>\mathrm{Cr}>\mathrm{Ti}$
(B) $\mathrm{V}>\mathrm{Ti}>\mathrm{Cr}>\mathrm{Mn}$
(C) $\mathrm{Cr}>\mathrm{Mn}>\mathrm{V}>\mathrm{Ti}$
(D) $\mathrm{Ti}>\mathrm{V}>\mathrm{Cr}>\mathrm{Mn}$
14. Which of the following complexes exhibits the Highest paramagnetic behaviour?
(A) $\left[\mathrm{Fe}(\mathrm{en})(\mathrm{bpy})\left(\mathrm{NH}_{3}\right)_{2}\right]^{2+}$
(B) $\left[\mathrm{V}(\mathrm{gly})_{2}(\mathrm{OH})_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$
(C) $\left[\mathrm{CO}(\mathrm{ox})_{2}\left(\mathrm{OH}_{2}\right)\right]^{-}$
(D) $\left[\mathrm{Ti}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
15. Among the following metal carbonyls, the $\mathrm{C}-\mathrm{O}$ bond order is lowes in
(A) $\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]^{+}$
(B) $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]$
(C) $\left[\mathrm{Cr}(\mathrm{CO})_{6}\right]$
(D) $\left[\mathrm{V}(\mathrm{CO})_{6}\right]$
16. Native silver metal forms a water soluble complex with a dilute aqueous solution of NaCN in the presence of
(A) nitrogen
(B) oxygen
(C) carbon dioxide
(D) argon
17. MgSO_{4} on reaction with $\mathrm{NH}_{4} \mathrm{OH}$ and $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ forms a white crystalline precipitate. What is its formula?
(A) $\mathrm{Mg}\left(\mathrm{NH}_{4}\right) \mathrm{PO}_{4}$
(B) $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
(C) $\mathrm{MgCl}_{2} \cdot \mathrm{MgSO}_{4}$
(D) MgSO_{4}
18. Which of the following will not react with NaOH to form water ?
(A) $\mathrm{NaH}_{2} \mathrm{PO}_{3}$
(B) $\mathrm{Na}_{2} \mathrm{HPO}_{3}$
(C) $\mathrm{Na}_{2} \mathrm{HPO}_{4}$
(D) None
19. Identify the compound ' X ' in the following reaction:
$\xrightarrow[\text { (2) } \mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-} \text {, heat }]{\text { (1) } \mathrm{Na}^{+} \mathrm{OC}_{2} \mathrm{H}_{5}}$
(3) H^{+}

Malonic ester + Isobutyl bromide
(4) Heat, $-\mathrm{CO}_{2} \quad X$
(A) Isocaproic acid
(B) Neocaproic acid
(C) Normal caproic acid
(D) None of these
20.

(i) lime water
$\xrightarrow[\text { (iii) heat }]{\text { (ii) } \mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{Fe}^{3+}}$
(iii) heat
$[B]$. Here $[B]$ is

(A)
(B)
(C)

(D)

PART-B (21-40)
21.

22. The absolute configurations at the two chiral centers in the following compound

(A) aR, bS
(B) $a S, b R$
(C) aS, bS
(D) $a R, b R$
23. 1 L flask contains nitrogen along with a drop or two of water at $40^{\circ} \mathrm{C}$, the total pressure being 760 torr. If all the contents are transferred to another flask of 0.5 L at the same temperature, the pressure set up in the second flask will be (aqueous tension at $40^{\circ} \mathrm{C}=55$ torr)
(A) 1410 torr
(B) 1465 torr
(C) 1520 torr
(D) none of these
24. If A and B are Hermitian and commute, then the product of $A B$ will be
(A) 0
(B) 1
(C) Hermitian
(D) Anti Hermitian
25. The wave function $\psi_{1}=\sqrt{2 \pi}$ and $\psi_{2}=\sqrt{\pi}$ cosnx in the interval 0 to 2π are
(A) normalized
(B) orthogonal
(C) cannot be predicted
(D) none
26. Consider the cell $\operatorname{Ag}|\operatorname{AgBr}(\mathrm{s})| \mathrm{Br}^{-}(\mathrm{a}=0.32), \mathrm{Cu}^{2+}(\mathrm{a}=0.42), \mathrm{Cu}^{+}(\mathrm{a}=0.36) \mid \mathrm{Pt}$. The e.m.f. of this cell at $25^{\circ} \mathrm{C}$ is 0.0565 V . Calculate the standard e.m.f. of the cell.
(A) -0.031 V
(B) 0.031 V
(C) -0.818 V
(D) 0.818 V
27. Calculate the frequency in wave numbers of the 3rd line in the Pfund series $(n=5)$ in the emission spectrum of atomic hydrogen. $\left(R=109677.76 \mathrm{~cm}^{-1}\right)$
(A) $2700 \mathrm{~cm}^{-1}$
(B) $4400 \mathrm{~cm}^{-1}$
(C) $7800 \mathrm{~cm}^{-1}$
(D) $12000 \mathrm{~cm}^{-1}$
28. One mole of the ideal gas at 3 atm and 300 K is expanded isothermally to double its initial volume against an external pressure of 1.5 atm . Calculate W .
(A) 12.3 J
(B) 1250 J
(C) -12.3 J
(D) -1250 J
29. A reaction $A_{2}+B \rightarrow$ Products, involves the following mechanism :

Website: www.vpmclasses.com
$\mathrm{A}_{2} \quad 2 \mathrm{~A}$ (fast) (A being the intermediate)
$A+B \overrightarrow{K_{2}}$ Products (slow). The rate law consistent to this mechanism is :
(A) rate $=k\left[A_{2}\right][B]$
(B) rate $=k\left[A_{2}\right]^{2}[B]$
(C) rate $=k\left[A_{2}\right]^{1 / 2}[B]$
(D) rate $=k\left[A_{2}\right][B]^{2}$
30. The vectors $3 p \hat{i}+\hat{j}+q \hat{k}$ and $2 p \hat{i}+3 \hat{j}+6 q \hat{k}$ are orthogonal, if :
(A) $p=q$
(B) $p^{2}+q^{2}=3$
(C) $p=-q$
(D) Never
31. The relationship between the dissociation energy of N_{2} and $\mathrm{N}_{2}{ }^{+}$is
(A) $\mathrm{N}_{2}=\mathrm{N}_{2}{ }^{+}$
(B) Unpredictable
(C) $\mathrm{N}_{2}>\mathrm{N}_{2}{ }^{+}$
(D) $\mathrm{N}_{2}^{+}>\mathrm{N}_{2}$
32. The correct absolute configuration assigned for compound (I) and (II) respectively is -

(A) R, R
(B) R, S
(C) S,S
(D) S, R
33. The correct order of acidic strength is -
(A) $\mathrm{SiO}_{2}<\mathrm{CO}_{2}<\mathrm{N}_{2} \mathrm{O}_{5}<\mathrm{SO}_{3}$
(B) $\mathrm{SiO}_{2}<\mathrm{N}_{2} \mathrm{O}_{5}<\mathrm{CO}_{2}<\mathrm{SO}_{3}$
(C) $\mathrm{CO}_{2}<\mathrm{SiO}_{2}<\mathrm{N}_{2} \mathrm{O}_{5}<\mathrm{SO}_{3}$
(D) $\mathrm{SO}_{3}<\mathrm{CO}_{2}<\mathrm{N}_{2} \mathrm{O}_{5}<\mathrm{SiO}_{2}$
34. Which of the following has maximum number of lone pairs on central atom?
(A) $\mathrm{ClO}_{3}-$
(B) XeF_{4}
(C) SF_{4}
(D) $\mathrm{I}_{3}{ }^{-}$
35. Which of the following is an arachno borane -
(A) $\left[\mathrm{B}_{6} \mathrm{H}_{6}\right]^{2}$
(B) $\left[\mathrm{B}_{5} \mathrm{H}_{9}\right]$
(C) $\left[\mathrm{B}_{2} \mathrm{H}_{6}\right]$
(D) $\left[\mathrm{B}_{6} \mathrm{H}_{12}\right]$

Which of the following is incorrect for above reaction:
(A) Product is optically active
(B) It is an oxidation reaction
(C) Overall reaction is stereospecific syn addition
(D) $\mathrm{B}_{2} \mathrm{H}_{6}$ adds on alkene by forming a cyclic transition state.
37. The Miller indices of crystal plane which cuts through the crystal axis at $2 \mathrm{a},-3 \mathrm{~b},-3 \mathrm{c}$ is
(A) $2 \overline{3} \overline{3}$
(B) 326
(C) 623
(D) $3 \overline{2} \overline{2}$
38. IR spectra of benzaldehyde and acetophenone will show distinguishing peaks in the region
(A) $3000-3600 \mathrm{~cm}^{-1}$
(B) $1200-1300 \mathrm{~cm}$
(C) 2700-2800 and $2860-2975 \mathrm{~cm}^{-1}$
(D) 1600 and 1740 cm
39. Which is not correctly matched?
(A) XeO_{3} : trigonal bipyramidal
(B) $\mathrm{CIF}_{3}: T$ sháped
(C) XeOF_{4} : square pyramidal
(D) XeF_{2} : linear shape
40. If standard reduction potentials of $\mathrm{Ni}^{2+} / \mathrm{Ni}$ and $\mathrm{Au}^{3+} / \mathrm{Au}$ couples are -0.25 V and 1.50 V respectively, then the EMF of the cell
$\mathrm{Ni} / \mathrm{Ni}^{2+}(0.01 \mathrm{M}) \| \mathrm{Au}^{3+}(0.1 \mathrm{M}) \mathrm{Au}$ will be
(A) unpredictable
$(B)=E M F{ }^{\circ}$
(C) < EMF응
(D) $>$ EMF $^{\circ}$

PART-C (41-50)

41. When 16.8 g of white solid, X were heated, 4.4 g of acid gas A , that turned lime-water milky was driven off together with 1.8 g of a gas B which condensed to a colourless liquid. The solid that remained, Y , dissolved in water to give an alkaline solution, which with excess of barium chloride solution gave a white precipitate Z. The precipitate effervesced with acid giving of carbon dioxide. Identify A, B and Y and write down the equation for the thermal decomposition of X.
42. Acetylene $+\mathrm{CH}_{3} \mathrm{MgBr} \longrightarrow \mathrm{X}+\mathrm{CH}_{4}$
$X+\mathrm{CO}_{2} \longrightarrow Y \xrightarrow{\mathrm{H}^{+}} \mathrm{Z}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{2}\right)$
$\mathrm{Z} \xrightarrow{\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HgSO}_{4}} \mathrm{~W}\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}\right)$
$\mathrm{W}+\mathrm{KMnO}_{4} \longrightarrow \mathrm{CH}_{2}(\mathrm{COOH})_{2}$
Identify $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{W}$ and write complete reaction equation.
43. Bromobenzene $+\mathrm{Mg} \xrightarrow{\text { ether }} \mathrm{E}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{MgBr}\right)$

$$
\mathrm{E}+\text { ethylene oxide } \xrightarrow{\mathrm{H}^{+}} \mathrm{F}\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}\right)
$$

$$
\mathrm{F}+\mathrm{PBr}_{3} \longrightarrow \mathrm{G}\left(\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{Br}\right)
$$

$$
\mathrm{G}+\mathrm{NaCN} \longrightarrow \mathrm{H}\left(\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}\right)
$$

$$
\mathrm{H}+\mathrm{H}_{2} \mathrm{SO}_{4} \xrightarrow[\mathrm{H}_{2} \mathrm{O}]{\Delta} \mathrm{I}\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}\right)
$$

$$
\mathrm{I}+\mathrm{SOCl}_{2} \longrightarrow \mathrm{~J}\left(\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{OCl}\right)
$$

$$
\mathrm{J}+\text { anhydrous } \mathrm{HF} \xrightarrow{\text { catalyst }} \mathrm{K}\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}\right)
$$

$$
\left.\mathrm{K}+\mathrm{H}_{2} \xrightarrow{\text { catalyst }} L\left(\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}\right)\right)
$$

$$
\mathrm{L}+\mathrm{H}_{2} \mathrm{SO}_{4}, \xrightarrow{\text { Warm }} \mathrm{M}\left(\mathrm{C}_{9} \mathrm{H}_{8}\right)
$$

Identify $\mathrm{E}, \mathrm{F}, \mathrm{G}, \mathrm{H}, \mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}$ and write complete reaction equation.
44. The degree of dissociation of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ in a dilute aqueous solution, containing 7.0 g of the salt per 100 g of water at $100^{\circ} \mathrm{C}$ is 70%. If the vapour-pressure of water at $100^{\circ} \mathrm{C}$ is 760 mm , calculate the vapour-pressure of the solution.
45. Heat of combustion of ethylene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ is $-337 \mathrm{kcal} \mathrm{mol}^{-1}$ under standard state at 298 K . Assuming 70.0% efficiency, how many kg of water at $20^{\circ} \mathrm{C}$ can be converted into steam at $100^{\circ} \mathrm{C}$ burning $1.00 \mathrm{~m}^{3}$ of $\mathrm{C}_{2} \mathrm{H}_{4}$ gas measured at STP? Specific heat of water is $1 \mathrm{kcal} \mathrm{kg}^{-1}$ K^{-1} and its latent heat of vaporization is $540 \mathrm{kcal} \mathrm{kg}^{-1}$.
46. Identify the intermediate products $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and W in the following sequence of reactions.

$(X) \xrightarrow{\mathrm{Zn} / \mathrm{H}^{+}}$

47. The vapour-pressure of ethanol and methanol are 44.5 and 88.7 mm Hg respectively. An ideal solution is formed at the same temperature by the mixing 60 g of ethanol with 40 g of methanol. Calculate the total vapour-pressure of the solution and the mole-fraction of methanol in the vapour.
48. The rate law for the reaction $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$ is

$$
-\frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta \mathrm{t}}=\mathrm{k}(\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]
$$

The proposed mechanism is

$$
\begin{aligned}
& \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NO}_{3}(\mathrm{~g}) \\
& \mathrm{NO}(\mathrm{~g})+\mathrm{NO}_{3}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
\end{aligned}
$$

(a) The reaction mechanism does not include a collision among three molecules. Since the reaction order is three, shouldn't the mechanism include such a collision?
(b) Which step in the proposed mechanism is the slowest step ?
(c) What is the molecularity of each step ?
49. (a) C_{v} for uranium metal is $3.04 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ at 20 K . Calculate the absolute entropy of the metal in $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ at 20 K .
(b) Calculate the uncertainty in the velocity of an electron if uncertainty in its position is 1 A .
50. If v is the volume of a gas adsorbed on the surface of a solid, the plot of p / y versus p where p is the gas pressure in the Langmuir adsorption isotherm, gives a straight line. What will be the slope of this line?

ANSWER KEY

HINTS \& SOLUTIONS

1.(B) This question is based on the formulae of r.m.s. speed, i.e. $u_{r m s}=$

$$
\begin{gathered}
\mathrm{u}_{\mathrm{rms}}\left(\mathrm{~N}_{2}\right)=\mathrm{u}_{\mathrm{rms}}(\mathrm{He}) \\
\\
\sqrt{\frac{3 \mathrm{RT}}{28}}=\sqrt{\frac{3 \mathrm{R} \times 273}{44}} \\
\text { or } \quad \mathrm{T}=\frac{\frac{273 \times 28}{44}}{}=173.7 \mathrm{~K}
\end{gathered}
$$

2.(C) $A+B$

Applying the steady state approximation to C
$\mathrm{K}_{1} \mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{B}}=\mathrm{K}_{2} \mathrm{C}_{\mathrm{C}}+\mathrm{K}_{3} \cdot \mathrm{C}_{\mathrm{B}} \cdot \mathrm{C}_{\mathrm{C}}$;
$\therefore \quad \mathrm{C}_{\mathrm{C}}=\mathrm{K}_{2}+\mathrm{K}_{3} \mathrm{C}_{\mathrm{B}}$

3.(B) Resonance energy

4.(C) trans-1, 2-Dichloroethylene is symmetrically substituted, dipole moment due to one $\mathrm{C}-\mathrm{Cl}$ bond is cancelled by equal but opposite dipole moment due to other $\mathrm{C}-\mathrm{Cl}$ bond.

Toll Free: 1800-2000-092
Mobile: 9001297111, 9829619614, 9001894073, 9829567114
Website: www.vpmclasses.com
FREE Online Student Portal: examprep.vpmclasses.com
5.(B) In product (A), Aromating ring = 3

Anti Aromatic ring = 2
less stable
In product (B) has Aromatic ring = 3
Anti Aromatic ring $=0$
Stable

Reimer-Tiemann Reaction

7.(C)

8.(D) Stark Enamine Reaction :

\qquad

\qquad

9.(C) NaBH_{4} reduces only $\mathrm{C}=\mathrm{O}$ group and not -COOH group. The product formed undergoes cyclization to form γ-lactone (six-membered rings are formed easily).

10.(C) All salts of alkali metals are highly soluble; solubility of sufphates of alkaline earth decreases down the group.
11.(A) CsCl has body centered cubic structure. A cube has six faces and each cube will have one Cs^{+}ion. So, the answer is (A).
12.(B) $B e_{2}=$ E.C. $-\sigma 1 s^{2} \sigma * 1 s^{2} \sigma 2 s^{2} \sigma * 2 s^{2}$
B.O. $=\frac{\frac{4-4}{2}}{=0}$
Be_{2} does not exist under normal conditions.
$\mathrm{Cr} \quad \mathrm{Mn}$
13.(C) $\quad 3 d^{5} 4 s^{1}$
(Half filled)
$3 d^{5} 4 s^{2}$
$3 d^{5}>3 d^{5} 4 s^{1}>3 d^{3} 4 s^{1}$
The second ionisation enthalpy of the first transition series increase almost regularly with increase in atomic number.
14.(C) $\left[\mathrm{V}(\mathrm{gly})_{2}(\mathrm{OH})_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}=\mathrm{V}^{+5}=3 \mathrm{~d}^{0}$ (no unpaired e^{-})
[Fe(en) (bpy) $\left.\left(\mathrm{NH}_{3}\right)_{2}\right]^{2+}=\mathrm{Fe}^{2+}\left(3 d^{6}\right)$ strong field (no unpaired e^{-})

4 unpaired e^{-}
$\left[\mathrm{CO}(\mathrm{Ox})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{-}=\mathrm{CO}^{+5}\left(3 \mathrm{~d}^{4}\right)$ (weak field)
$\left[\mathrm{Ti}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}=\mathrm{Ti}^{3+}\left(3 \mathrm{~d}^{1}\right)$ (one unpaired e^{-})

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
15.(B) Greater the extent of $\mathrm{d} \pi-\mathrm{p} \pi$ back bonding, smaller will be the bond order of CO bond in metal carbonyls. In $\mathrm{Fe}(\mathrm{CO})_{5}$, there is maximum number of valence shell electrons (d electrons), greatest chances of $p \pi-d \pi$ back bonding, lowest bond order of CO bond.
16.(B) A water soluble complex with silver and dilute aqueous solution of NaCN is $\mathrm{Na}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]$. In the cyanide process, the native silver is crushed and treated with aqueous NaCN solution and aerated.
$4 \mathrm{Ag}+8 \mathrm{NaCN}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} \longrightarrow 4 \mathrm{Na}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]+4 \mathrm{NaOH}$

$$
\mathrm{Mg}\left(\mathrm{NH}_{4}\right) \mathrm{PO}_{4} \downarrow
$$

17.(A) $\mathrm{MgSO}_{4}+\mathrm{NH}_{4} \mathrm{OH}+\mathrm{Na}_{2} \mathrm{HPO}_{4} \longrightarrow \quad$ white
18.(B) $\mathrm{NaH}_{2} \mathrm{PO}_{3}+\mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{HPO}_{3}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{Na}_{2} \mathrm{HPO}_{3}$ is normal salt and does not react any more with NaOH .
$\mathrm{Na}_{2} \mathrm{HPO}_{4}+\mathrm{NaOH} \longrightarrow \mathrm{Na}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O}$
19.(A) $\mathrm{CH}_{2}(\mathrm{COOEt})_{2} \xrightarrow{\mathrm{NaOC}_{2} \mathrm{H}_{5}} \stackrel{\ominus}{\mathrm{C}} \mathrm{H}-(\mathrm{COOEt})_{2}$

UGC NET, GATE, CSIR NET, IIT-JAM, IBPS, CSAT/IAS, SLET, CTET, TIFR, NIMCET, JEST, JNU, ISM etc.
21.(A)

22.(A)

aR, bS
23.(B) $\quad P_{1}($ dry $) \times V_{1}=P_{2}($ dry $) \times V_{2} ; P_{1}=P_{\text {wet c }}$ - aqueous tension $=760-55=705$ torr;
$V_{2}=0.5 \mathrm{~L}$. Hence, $P_{2}($ dry gas $)=\frac{705 \times 1}{0.5}=1410$ torr
P_{2} (wet gas) $=1410+55=1465$ torr
24.(C) If $[A B]=0=A B-B A$
than $(A B)^{+}=B^{+} A^{+}=B A=A B \quad\left[A=A^{+} ; B=B^{+}\right]$
$A B$ is Hermition.
25.(B)
$\int_{0}^{2 \pi} \sqrt{\frac{1}{2 \pi}} \sqrt{\frac{1}{\pi}} \cos n x d x=\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos n x d x=\frac{1}{\sqrt{2 \pi}}\left[\frac{\sin n x}{n}\right]_{0}^{2 \pi}=\frac{1}{\sqrt{2 \pi}}\left[\frac{\sin n(2 \pi)-\sin 0}{n}\right]=\frac{1}{\sqrt{2 \pi}}\left[\frac{0-0}{n}\right]=0$ which is condition of orthogonality.
26.(D) At left electrode $\mathrm{Ag}(\mathrm{s})+\mathrm{Br}^{-} \longrightarrow \mathrm{AgBr}(\mathrm{s})+\mathrm{e}^{-}$

At night electrode $\mathrm{Cu}^{2}+\mathrm{e}^{-} \longrightarrow \mathrm{Cu}^{+}$
Overall reaction $\mathrm{Ag}(\mathrm{s})+\mathrm{Cu}^{2+}+\mathrm{Br}^{-} \longrightarrow \mathrm{AgBr}(\mathrm{s})+\mathrm{Cu}^{+}$

The Nernst equation
$E=E^{0}-\frac{R T}{n F} \ln \frac{a_{C}^{c} a_{D}^{d}}{a_{A}^{a} a_{B}^{b}}$
can be written as

$$
\mathrm{E}=\mathrm{E}^{0}-\frac{(0.0591)}{(1)} \log \frac{\mathrm{a}_{\mathrm{Cu}^{2+}}}{\mathrm{a}_{\mathrm{Cu}^{2}} \mathrm{a}_{\mathrm{Br}^{-}}}
$$

i.e. $\quad 0.0565=E^{0}-(0.0591) \log \frac{0.36}{0.42 \times 0.32}=E^{0}-0.0253$
$\mathrm{E}_{0}=0.0565+0.0253=0.818 \mathrm{~V}$
27.(A) $\overline{\mathrm{v}}=\mathrm{R}\left(\frac{1}{\mathrm{n}^{2}}-\frac{1}{\mathrm{n}^{\prime 2}}\right) ; \mathrm{n}=5, \mathrm{n}^{\prime}=8$ for the 3rd line.

$$
=109677.76 \times\left(\frac{1}{5^{2}}-\frac{1}{8^{2}}\right)=2673.39 \mathrm{~cm}^{-1}
$$

28.(B) $V_{1}=$
$V_{2}=\frac{p_{1} V_{1}}{p_{2}}=\frac{(3 \mathrm{~atm})\left(8.2 \mathrm{dm}^{3}\right)}{(1.5 \mathrm{~atm})}=16.4 \mathrm{dm}^{3}$
$W=p_{e x} \Delta V=(1.5 \mathrm{~atm})(16.4-8.2) \mathrm{dm}^{3}=12.3$ atm $\mathrm{dm}^{3}=1.246 \times 10^{3} \mathrm{~J}$
Since work is done by the system so it is positive.
29.(C) From the slow step : rate $=\mathrm{k}_{2}[\mathrm{~A}][\mathrm{B}] \ldots$ (i)

From fast step : $K_{e}=\frac{[A]^{2}}{\left[A_{2}\right]} \quad$ or $\quad[A]=K_{e}^{1 / 2}[A]^{1 / 2}$
From (i) and (ii) rate $=k_{2} k_{e}^{1 / 2}\left[A_{2}\right]^{1 / 2}[B]=k\left[A_{2}\right]^{1 / 2}[B]$
30.(D) The vectors $3 p \hat{i}+\hat{j}+q \hat{k}$ and $2 p \hat{i}+3 \hat{j}+6 q \hat{k}$ are orthogonal.
$\therefore(3 p \hat{i}+\hat{j}+q k)(2 p \hat{i}+3 \hat{j}+6 q \hat{k})=0$
$\Rightarrow \quad 6 p^{2}+3+6 q^{2}=0$
which is not possible because p^{2} and q^{2} are positive.
\therefore The given vectors can never orthogonal.
31.(C) According to MOT the bond order of N_{2} is 3 whereas that of $\mathrm{N}_{2}{ }^{+}$is 2.5 . So the bond dissociation energy of N_{2} will be greater than that of $\mathrm{N}_{2}{ }^{+}$. Bond dissociation energy is directly proportional to bond order.
(B. $0 \propto \mathrm{BDE}$)
32. (B)

(R)

Priority Sequence
$\mathrm{NH}_{2}>\mathrm{COOH}>\mathrm{CH}_{3}>\mathrm{H}$

(S)

Priority Sequence
$\mathrm{NH}_{2}>\mathrm{CH}_{2} \mathrm{SH}>\mathrm{COOH}$
33. (A) These are the anhydrides of following acids:

$$
\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{H} 2 \mathrm{SiO}_{3} .
$$

The acid strength order of these acid is $\mathrm{H}_{2} \mathrm{SO}_{4},>\mathrm{HNO}_{3}>\mathrm{H}_{2} \mathrm{CO}_{3}>\mathrm{H} 2 \mathrm{SiO} 3$. The oxides also follow the same order.
34. (D) $\quad \mathrm{I}_{3}{ }^{-}-\mathrm{sp}^{3} \mathrm{~d}$ Hybridization with 3 lone pairs

35. (D) Arachno boranes have the general formula - $\mathrm{BnHn}_{\mathrm{n}+6}$ with $(n+3)$ electron pairs $\mathrm{B}_{6} \mathrm{H}_{12}$ is arachno borane.
36. (A)

37.(D) a
b
-3
-3
$\frac{1}{2} \quad-\frac{1}{3}$
$-\frac{1}{3}$
3
-2
-2
\therefore Miller indices are $(3 \overline{2} \overline{2})$.
38.(C) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$ and $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{C}-\mathrm{CH}_{3}$ will differ in the absorption peaks due to aldehydic $\mathrm{C}-\mathrm{H}$ (2700-2800 cm^{-1}) and $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ stretch (2860-2975 cm^{-1}).
39. (A) XeO_{3} has trigonal pyradimal shape .

Pyramidal

40.(D) $E M F=E M F \circ+\frac{0.059}{6} \log \frac{\left[\mathrm{Au}^{3+}\right]^{2}}{\left[\mathrm{Ni}^{2+}\right]^{3}}=E M F^{\circ}+\frac{0.059}{6} \log \frac{(0.1)^{2}}{(0.01)^{3}}=E M F^{\circ}+\frac{0.059}{6} \log 10^{4}$

$$
=\mathrm{EMF}^{\circ}+\frac{0.059}{6} \times 4 \text {. Hence } \mathrm{EMF}>\mathrm{EMF}^{\circ} \text {. }
$$

41. (X) is $\mathrm{NaHCO}_{3} \quad$ (molecular wt. $\left.=84\right)$

Reactions involved are given below :

$$
\begin{aligned}
& \underset{\text { (X) }}{2 \mathrm{NaHCO}_{3}} \xrightarrow{\Delta} \mathrm{Na}_{2} \mathrm{CO}_{\text {(V) }}(\mathrm{s})+\underset{\text { (A) }}{\mathrm{CO}_{2}(\mathrm{~g})}+\underset{\text { (B) }}{\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})} \\
& 2 \times 84=168 \mathrm{~g} \quad 106 \mathrm{~g} \quad 44 \mathrm{~g} \quad 18 \mathrm{~g} \\
& \approx 16.8 \mathrm{~g} \quad 10.6 \mathrm{~g} 4.4 \mathrm{~g} \quad 1.8 \mathrm{~g} \\
& \mathrm{CO}_{2}+\underset{\text { limewier }}{\mathrm{Ca}(\mathrm{OH})_{2}} \longrightarrow \underset{\text { white ppt. }}{\mathrm{CaCO}_{3}} \downarrow+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is condensed to liquid water

42. $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}+\mathrm{CH}_{3} \mathrm{MgBr} \mathrm{HC} \equiv \mathrm{CMgBr}+\mathrm{CH}_{4}$

(X)

43.

(F)
(G)

44. $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \square \quad \mathrm{Ca}^{2+}+2 \mathrm{NO}_{3}^{-}$

1	0	0	Before dissociation
$1-\alpha$	α	2α	After dissociation

\therefore Total moles at equilibrium $=(1+2 \alpha)=1+2 \times 0.7 \quad(\alpha=0.7)$

$$
\text { For } \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}: \frac{m_{\text {nor }}}{m_{\text {exp }}}=1+2 \alpha
$$

$$
\therefore \quad m_{\exp }=\frac{m_{\text {not }}}{1+2 \times 0.7}=\frac{164}{2.4}=68.33
$$

Also at $100^{\circ} \mathrm{C}, \mathrm{P}_{0}=760 \mathrm{~mm}, \mathrm{w}=7 \mathrm{~g}$

$$
\mathrm{W}=100 \mathrm{~g}
$$

$\because \quad \frac{P_{0}-P_{s}}{P_{s}}=\frac{w M}{W m}$

$$
\begin{aligned}
& \text { Now, } \frac{P_{o}-P_{s}}{P_{s}}=\frac{7 \times 18}{68.33 \times 100}=0.0184 \quad \text { or } \quad \frac{\mathrm{P}^{\circ}}{P_{\mathrm{s}}}-1=0.0184 \\
& \therefore \quad \mathrm{P}_{\mathrm{S}}=\frac{760}{1.0184}=746.26 \mathrm{~m}
\end{aligned}
$$

45. $1.00 \mathrm{~m}^{3}$ at $\mathrm{STP}=1000 \mathrm{~L}=\frac{1000}{22.4} \mathrm{~mol}$

Enthalpy change due to burning of $1.00 \mathrm{~m}^{3}$ ethylene $=-337 \times \frac{1000}{22.4} \mathrm{kcal}$
Due to 70% efficiency, useful heat is $=337 \times \frac{1000}{22.4} \times \frac{70}{100} \mathrm{kcal}$
$\mathrm{H}_{2} \mathrm{O}(l)$ is converted into $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ in two stages
$\mathrm{H}_{2} \mathrm{O}\left(l, 20^{\circ} \mathrm{C}\right) \longrightarrow \mathrm{H}_{2} \mathrm{O}\left(\mathrm{I}, 100^{\circ} \mathrm{C}\right), \Delta \mathrm{H}_{1}=80 \mathrm{kcal}^{-1}$ (rise in temperature $=80^{\circ} \mathrm{C}$)
$\mathrm{H}_{2} \mathrm{O}\left(l, 100^{\circ} \mathrm{C}\right) \longrightarrow \mathrm{H}_{2} \mathrm{O}\left(\mathrm{g}, 100^{\circ} \mathrm{C}\right)$,
$\Delta \mathrm{H}_{2}=540$ kcal $\mathrm{kg}-\mathrm{t}$
$\Delta \mathrm{H}_{(\text {Total })}=620 \mathrm{kcal} \mathrm{kg}^{-1}$
46. $(X)=$
thus, water converted into steam $=\frac{\text { heat evolved }}{\text { heat required }}$
$\frac{337 \times 1000}{22.4} \times \frac{70}{100} \times \frac{1}{620}=\mathbf{1 6 . 9 8} \mathbf{~ k g}$

$(Y)=$

$(Z)=$

$(W)=$

47. Total vapour-pressure of solution:
$P_{m}=P_{\text {eth }}^{\circ} \times M . F_{\text {eth }}+P_{\text {meth }}^{\circ} \times M . F_{\text {meth }}=\underbrace{~}_{P_{\text {eth }}^{P_{\text {eth }}^{\circ}} \times x_{\text {eth }}}+\underbrace{\rho_{\text {meth }}^{\circ} \times x_{\text {meth }}}_{P_{\text {meth }}^{\circ}}$
Given that:
$P_{\text {eth }}^{\circ}=44.5 \mathrm{~mm} \mathrm{Hg}, \mathrm{p}_{\text {meth }}^{0}=88.7 \mathrm{~mm} \mathrm{Hg}$
wt. of ethanol $=60 \mathrm{~g}$, wt. of methanol $=40 \mathrm{~g}$

$$
\begin{aligned}
& \therefore \quad n_{\text {eth }}=\frac{60}{40}=1.304 \quad(\text { mol. wt. of ethanol }=40) \\
& n_{\text {meth }}=\frac{40}{32}=1.25 \quad(\text { mol. wt. of methanol }=32) \\
& x_{\text {eth }}=\frac{n_{\text {eth }}}{n_{\text {eth }}+n_{\text {meth }}}=\frac{1.304}{1.304+1.25}=\frac{1.304}{2.554}=0.51
\end{aligned}
$$

$$
x_{\text {meth }}=\frac{n_{\text {meth }}}{n_{\text {meth }}+n_{\text {ett }}}=\frac{1.25}{2.554}=0.49
$$

$$
\therefore \quad P_{m}=44.5 \times 0.51+88.7 \times 0.49=22.67+43.46=66.13 \mathrm{~mm} \mathrm{Hg}
$$

mole-fraction of methanol in vapour $=\frac{P_{\text {meth }}}{P_{m}}=\frac{43.46}{66.13}=0.66 \mathrm{~mm} \mathrm{Hg}$
48. (a) No, A collision among three molecules is not likely. The $[\mathrm{NO}]^{2}$ term results because the slowest step in the mechanism depends on [NO] and some other concentration term that is directly related to $[\mathrm{NO}]\left[\mathrm{O}_{2}\right]$.
(b) The slowest step is the second step in the proposed reaction mechanism. Assuming that the first step is fast and has reached a state of equilibrium, $\mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \mathrm{NO}_{3(\mathrm{~g})}$
$\mathrm{NO}_{(\mathrm{g})}+\mathrm{NO}_{3(\mathrm{~g})} \xrightarrow[k_{2}]{ } 2 \mathrm{NO}_{2(\mathrm{~g})}$
then the concentration of $\mathrm{NO}_{3}(\mathrm{~g})$ is related to the concentrations of $\mathrm{NO}(\mathrm{g})$ and $\mathrm{O}_{2}(\mathrm{~g})$ by the equilibrium relation $\mathrm{K}_{1}=\left[\mathrm{NO}_{3}\right] /[\mathrm{NO}]\left[\mathrm{O}_{2}\right]$ or $\left[\mathrm{NO}_{3}\right]=\mathrm{K}_{1}[\mathrm{NO}]\left[\mathrm{O}_{2}\right]$. The rate law for the reaction, as derived from the slowest step, is $\Delta\left[\mathrm{O}_{2}\right] / \Delta \mathrm{t}=\mathrm{k}_{2}\left[\mathrm{NO}^{2}\right]\left[\mathrm{NO}_{3}\right]=\mathrm{K}_{2}$ [NO]
$\mathrm{K}_{1}[\mathrm{NO}]\left[\mathrm{O}_{2}\right]=\mathrm{k}_{1} \mathrm{k}_{2}[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]=\mathrm{k}\left[\mathrm{NO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]$.
(c) Both steps are biomolecular.
49. At temperatures $(0<\mathrm{T}<20 \mathrm{~K}), \mathrm{C}_{\mathrm{p}}=\mathrm{C}_{\mathrm{v}}=\mathrm{aT}^{3}$
[Debye's T^{3} law]

$$
\mathrm{a}=\mathrm{C}_{\mathrm{v}} / \mathrm{T}^{3}=3.04 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} /(20 \mathrm{~K})^{3}=38.03 \times 10^{-5} \mathrm{JK}^{-4} \mathrm{~mol}^{-1}
$$

Hence,

$$
\mathrm{C}_{\mathrm{p}}=\mathrm{aT}^{3}=\left(38.3 \times 10^{-5} \mathrm{Jmol}^{-1} \mathrm{~K}^{-4}\right) \mathrm{T}^{3}
$$

From Eq. 14, $\quad \mathrm{dS}=(\mathrm{Cp} / \mathrm{T}) \mathrm{dT}=38.03 \times 10^{-5} \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-4} \mathrm{~T}^{2} \mathrm{~d}$
Or

$$
\mathrm{S}_{20}-\mathrm{S}_{0}=38.03 \times 10^{-5} \mathrm{JK}^{-4} \mathrm{~mol}^{-1}(20 \mathrm{~K})^{3} / 3
$$

Or

$$
\mathrm{S}_{20}=1.01 \mathrm{JK}^{-1} \mathrm{~mol}^{-1} \quad\left[\therefore \mathrm{~S}_{0}=0\right]
$$

50. A / C to langmuir isotherm

$$
\begin{aligned}
& \theta=\frac{K_{p}}{1+K_{p}} \\
& \frac{1}{\theta}=1+\frac{1}{K_{p}}
\end{aligned}
$$

Let $\theta=\frac{v}{v_{\text {mono }}}$
Where
coverage

$$
\frac{v_{\text {mono }}}{v}=1+\frac{1}{\mathrm{~K}_{\mathrm{p}}}
$$

Multiplying throughou by

